

M2-SMNO-nanomat-CMP1

Lecturer
Prof. Massimiliano Marangolo (coordinator)
INSP – Office 23-22 –3rd floor
marangolo@insp.jussieu.fr

Objective	This course introduces the fundamental basis of condensed matter physics. The objectives are:
	 to master simple models of phonon band structure calculation and to make the link with thermal properties to understand and master the main models allowing for the description of the electronic band structure of ordered solids to use the band structure in order to predict and calculate the electronic properties of a crystalline system to introduce the physics of semi-conductors and of simple fundamental devices
Content	Phonons & thermal properties: Classical theory of the harmonic crystal, dynamical matrix, acoustic/optical modes. Quantization, phonons. Reminder on Bose-Einstein statistics. Thermal properties of crystalline matter.
	Electronic properties of crystals : Born-Oppenheimer and independent electrons approximations, core and valence electrons, periodic potential and Bloch theorem, band structure, simple models: tight-binding and nearly free electrons.
	Metals, semiconductors, insulators: Reminder on Fermi-Dirac statistics, valence and conduction band, electron/hole. Link between the band structure and the electronic properties.
	Electronic transport : Bloch wave-packet, semi-classical dynamics of electrons, effective mass, electronic transport in the relaxation time approximation.
	Semiconductors: intrinsic, doping, conductivity, electronic devices (p-n junction, transistors).
Prerequisites	Crystallography: Bravais lattice, reciprocal lattice, diffraction.
	Quantum mechanics: perturbation theory.
	Statistical physics: Fermi-Dirac and Bose-Einstein statistics.
	Mathematics: Fourier transforms and distributions.
Examination	Written examination / 100