M2-SMNO-nanomat-CMP1

Lecturer	Prof. Massimiliano Marangolo (coordinator) INSP - Office 23-22 -3 rd floor marangolo@insp.jussieu.fr

| Objective | This course introduces the fundamental basis of condensed matter physics.
 The objectives are:
 - \quad to master simple models of phonon band structure calculation and to make the link with
 thermal properties
 to understand and master the main models allowing for the description of the electronic band
 structure of ordered solids
 to use the band structure in order to predict and calculate the electronic properties of a
 crystalline system
 to introduce the physics of semi-conductors and of simple fundamental devices |
| :--- | :--- | :--- |
| Content | Phonons \& thermal properties: Classical theory of the harmonic crystal, dynamical matrix, acoustic/optical
 modes. Quantization, phonons. Reminder on Bose-Einstein statistics. Thermal properties of crystalline
 matter.
 Electronic properties of crystals: Born-Oppenheimer and independent electrons approximations, core and
 valence electrons, periodic potential and Bloch theorem, band structure, simple models: tight-binding and
 nearly free electrons. |
| Metals, semiconductors, insulators: Reminder on Fermi-Dirac statistics, valence and conduction band, | |
| electron/hole. Link between the band structure and the electronic properties. | |
| Electronic transport: Bloch wave-packet, semi-classical dynamics of electrons, effective mass, electronic | |
| transport in the relaxation time approximation. | |
| Semiconductors: intrinsic, doping, conductivity, electronic devices (p-n junction, transistors). | |

