

M2 – SMNO-Nanomat – OptoSpin

Title:	Nanostructures for Optoelectronics and Spintronics (OptoSpin)	
	Apogée code: MU5PYM09 Number of credits: 6	
	Teaching hours: 36h courses, 14h tutorial or project	(SEM,(ZIV)

Lecturers:	Valia VOLIOTIS (coordinator)	Agnès BARTHELEMY	Laura THEVENARD
	INSP – 22-32 – 208	CNRS-Thalès	INSP – 22-23 – 206
	valia.voliotis@insp.jussieu.fr	agnes.barthelemy@cnrs-thales.fr	laura.thevenard@insp.jussieu.fr

Objective	The main goal of this course is to provide the basic concepts to understand optical and magnetic properties of nanostructures based on semiconductor and ferromagnetic materials and their applications to modern optoelectronics and spintronics.		
Content	 Optical properties of semiconductor nanostructures (quantum wells, wires and dots): light-matter interaction; absorption, spontaneous and stimulated emission; excitons, polaritons; applications to optical modulators, lasers, light emitting diodes. 		
	 Magnetism of nanostructures: anisotropy, Tc, magnetic domain-walls and domains; Spin polarized transport, GMR, TMR, STT, spin-orbitronics; magnetisation dynamics, magnetic resonance, spin waves, magnons. 		
	3. Bibliographic projects		
	 The course is correlated to practical works which we strongly recommend: Luminescence and Stark effect in quantum wells; Magneto-optical observation of magnetic domains; Micromagnetic simulations. 		
Prerequisites	We strongly recommend that the students take the course of Condensed Matter Physics 2.		
	Otherwise, they must have a background in semiconductor physics (band structure, perturbative k.p method) and in the general concepts of magnetism (ferro- and para-magnetism, magnetic anisotropy and Curie temperature)		
	Quantum mechanics; Quantum statistical physics		
Examination	Written examination		
	Bibliographic project oral defense		