

M2 – SMNO-nanomat – AdvCMP

Title	Advanced Condensed Matter Physics (AdvCMP)	
	Apogée code: MU5PYM11	
	Number of credits: 6	
	Teaching hours: 40h courses, 12h tutorial or project	

Lecturers	William SACKS (coordinator) IMPMC – Office 22-23 – 403	Andrea GAUZZI IMPMC – Office 13-23-411
	william.sacks@sorbonne-universite.fr	andrea.gauzzi@sorbonne-universite.fr

Objective	To gain knowledge of advanced physical properties of materials and their theoretical base beyond the independent electron concept. To investigate a number of challenging condensed phases such as superconductivity, magnetism, charge density waves, vortices, and more. The most important experimental tools, in particular electronic spectroscopies and materials characterization will be discussed.	
Content	 W. Sacks An overview of important superconducting and related materials Landau theory of second order phase transitions Exotic collective states: Superconductivity, vortices, Josephson effects Relevant theories: Ginzburg-Landau, London and BCS theories The cuprate high-Tc superconductors Important experimental techniques, photoemission and tunneling A. Gauzzi Experimental evidence of interacting electrons Real gases of fermions and bosons. Interaction representation. Green functions. Feynman diagrams. Interacting electrons. Quasiparticles. Fermi liquids. Interaction function. Renormalisation effects. Electronic instabilities. Examples: magnetism and superconductivity. Strongly correlated regime: Hubbard and t-J models A few tutorials will be proposed in which the students, guided by professors, shall find numerical solutions to advanced problems treated in the lecture course. Examples: Ginzburg-Landau and BCS equations of superconductivity, Hubbard and t-J models, etc. 	
Prerequisites	 - A good working knowledge of solid-state physics (Ashcroft & Mermin or Kittel level). - Quantum mechanics at the Masters 1 level. - Motivation to explore the most challenging states of matter and their theoretical concepts. 	
Examination	Final grade will be based on homework assignment(s), tutorial work and one final examination.	